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1. Introduction

1.1. Research Objectives

As part of this research program we proposed the development of a general analysis

and control design framework for large-scale nonlinear dynamical systems. In particular, we

concentrate on hybrid control, hierarchical control, impulsive dynamical systems, nonneg-

ative dynamical systems, compartmental systems, large-scale systems, nonlinear switching

control, and adaptive control. Application areas include large flexible interconnected space

structures, vibration control of aerospace structures, spacecraft stabilization, biological sys-

tems, physiological systems, and pharmacological systems.

1.2. Overview of Research

Controls research by the Principal Investigator [1-99] has concentrated on an energy-

based thermodynamic stabilization framework for hybrid control design of large-scale aero-

space systems. This framework provides a rigorous foundation for developing a unified

energy-based (network thermodynamic) analysis and synthesis methodology for large-scale

aerospace systems possessing hybrid, hierarchical, and feedback structures. This framework

additionally provides a rigorous alternative to designing gain scheduled controllers for gen-

eral nonlinear dynamical systems by constructing minimal complexity logic-based nonlinear

controllers consisting of a number of subcontrollers situated in levels (protocol layers of

hierarchies) such that each subcontroller can coordinate lower-level controllers. Correspond-

ingly, the main goal of this research has been to make progress towards the development

of analysis and hierarchical hybrid nonlinear control law tools for nonlinear large-scale dy-

namical systems. This framework provides the basis for developing control-system parti-

tioning/embedding using concepts of energy-based thermodynamic hybrid stabilization for

complex, large-scale aerospace systems.

An energy flow modeling framework for large-scale dynamical systems based on ther-

modynamic principles is developed. In particular, we introduced the notion of a control

vector Lyapunov function as a generalization of control Lyapunov functions and show that

asymptotic stabilizability of a nonlinear dynamical system is equivalent to the existence of

a control vector Lyapunov function. Moreover, using control vector Lyapunov functions,

we construct a universal decentralized feedback control law for a decentralized nonlinear

dynamical system that possesses guaranteed gain and sector margins in each decentralized

input channel. Connections between the recently developed notion of vector dissipativity



and optimality of the proposed decentralized feedback control law are also established. In

addition, we developed a neural adaptive output feedback control framework for adaptive

set-point regulation of nonlinear uncertain nonnegative and compartmental systems. The

proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error

signals corresponding to the system states and the neural network weighting gains. The ap-

proach is applicable to nonlinear systems with unmodeled dynamics of unknown dimension

and amplitude and rate saturation constraints. The aforementioned design frameworks were

applied to control of large-scale flexible structures, control of thermoacoustic combustion in-

stabilities in aeroengines, and active control for operating room hypnosis and intefisive care

unit sedation.

1.3. Goals of this Report

The main goal of this report is to summarize the progress achieved under the program

during the past three years. Since most of the technical results appeared or will soon appear

in over 100 archival journal and conference publications, we shall only summarize these

results and remark on their significance and interrelationship.

2. Description of Work Accomplished

The following partial research accomplishments have been completed over the past three

years.

2.1. Thermodynamics and Large-Scale Nonlinear Dynamical Sys-
tems

Modern complex dynamical systems are highly interconnected and mutually interdepen-

dent, both physically and through a multitude of information and communication network

constraints. The sheer size (i.e., dimensionality) and complexity of these large-scale dy-

namical systems often necessitates a hierarchical decentralized architecture for analyzing

and controlling these systems. Specifically, in the analysis and control-system, design of

complex large-scale dynamical systems it is often desirable to treat the overall system as

a collection of interconnected subsystems. The behavior of the composite (i.e., large-scale)

system can then be predicted from the behaviors of the individual subsystems and their

interconnections. The need for decentralized analysis and control design of large-scale sys-

tems is a direct consequence of the physical size and complexity of the dynamical model.
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In particular, computational complexity may be too large for model analysis while severe

constraints on communication links between system sensors, actuators, and processors may

render centralized control architectures impractical.

In an attempt to approximate high-dimensional dynamics of large-scale structural (oscil-

latory) systems with a low-dimensional diffusive (non-oscillatory) dynamical model, struc-

tural dynamicists have developed thermodynamic energy flow models using stochastic energy

flow techniques. In particular, statistical energy analysis (SEA) predicated on averaging sys-

tem states over the statistics of the uncertain system parameters have been extensively

developed for mechanical and acoustic vibration problems. Thermodynamic models are

derived from large-scale dynamical systems of discrete subsystems involving stored energy

flow among subsystems based on the assumption of weak subsystem coupling or identical

subsystems. However, the ability of SEA to predict the dynamic behavior of a complex

large-scale dynamical system in terms of pairwise subsystem interactions is severely limited

by the coupling strength of the remaining subsystems on the subsystem pair. Hence, it is

not surprising that SEA energy flow predictions for large-scale systems with strong coupling

can be erroneous.

An alternative approach to analyzing large-scale dynamical systems was introduced by

the pioneering work of Siljak and involves the notion of connective stability. In particular,

the large-scale dynamical system is decomposed into a collection of subsystems with local

dynamics and uncertain interactions. Then, each subsystem is considered independently so

that the stability of each subsystem is combined with the interconnection constraints to ob-

tain a vector Lyapunov function for the composite large-scale dynamical system guaranteeing

connective stability for the overall system. The use of vector Lyapunov functions in large-

scale system analysis offers a very flexible framework since each component of the vector

Lyapunov function can satisfy less rigid requirements as compared to a single scalar Lya-

punov function. Moreover, in large-scale systems several Lyapunov functions arise naturally

from the stability properties of each subsystem.

In light of the fact that energy flow modeling arises naturally in large-scale dynamical

systems and vector Lyapunov functions provide a powerful stability analysis framework for

these systems, it seems natural that dissipativity theory, on the subsystem level, should play

a key role in unifying these analysis methods. Specifically, dissipativity theory provides a

fundamental framework for the analysis and design of control systems using an input-output

description based on system energy related considerations. The dissipation hypothesis on

dynamical systems results in a fundamental constraint on their dynamic behavior wherein

a dissipative dynamical system can only deliver a fraction of its energy to its surroundings
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and can only store a fraction of the work done to it. Such conservation laws are prevalent in

large-scale dynamical systems such as aerospace systems, power systems, network systems,

structural systems, and thermodynamic systems. Since these systems have numerous input-

output properties related to conservation, dissipation, and transport of energy, extending

dissipativity theory to capture conservation and dissipation notions on the subsystem level

would provide a natural energy flow model for large-scale dynamical systems. Aggregating

the dissipativity properties of each of the subsystems by appropriate storage functions and

supply rates would allow us to study the dissipativity properties of the composite large-scale

system using vector storage functions and vector supply rates. Furthermore, since vector

Lyapunov functions can be viewed as generalizations of composite energy functions for all

of the subsystems, a generalized notion of dissipativity, namely, vector dissipativity, with

appropriate vector storage functions and vector supply rates, can be used to construct vector

Lyapunov functions for nonlinear feedback large-scale systems by appropriately combining

vector storage functions for the forward and feedback large-scale systems. Finally, as in

classical dynamical system theory, vector dissipativity theory can play a fundamental role

in addressing robustness, disturbance rejection, stability of feedback interconnections, and

optimality for large-scale dynamical systems.

In this.research [16,21], we develop vector dissipativity notions for large-scale nonlinear

dynamical systems; a notion not previously considered in the literature. In particular, we in-

troduce a generalized definition of dissipativity for large-scale nonlinear dynamical systems in

terms of a vector inequality involving a vector supply rate, a vector storage function, and an

essentially nonnegative, semistable dissipation matrix. Generalized notions of vector avail-

able storage and vector required supply are also defined and shown to be element-by-element

ordered, nonnegative, and finite. On the subsystem level, the proposed approach provides an
energy flow balance in terms of the stored subsystem energy, the supplied subsystem energy,

the subsystem energy gained from all other subsystems independent of the subsystem cou-

pling strengths, and the subsystem energy dissipated. Furthermore, for large-scale dynamical

systems decomposed into interconnected subsystems, dissipativity of the composite system

is shown to be determined from the dissipativity properties of the individual subsystems and

the nature of the interconnections. Finally, using vector dissipativity theory, we provide a

system-theoretic foundation for thermodynamics. Specifically, using a large-scale dynamical

systems theory prospective for thermodynamics, we show that vector dissipativity notions

lead to a precise formulation of the equivalence between dissipated energy (heat) and work

in a large-scale dynamical system. Next, we give a deterministic definition of entropy for a

large-scale dynamical system that is consistent with the classical thermodynamic definition

of entropy and show that it satisfies a Clausius-type inequality leading to the law of entropy
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nonconservation. Furthermore, we introduce a dual notion to entropy; namely, ectropy, as

a measure of the tendency of a large-scale dynamical system to do useful work and show

that conservation of energy in an isolated system necessarily leads to nonconservation of

ectropy and entropy. Then, we show that our thermodynamically consistent large-scale non-

linear dynamical system model is semistable, that is, it has convergent subsystem energies

to Lyapunov stable energy equilibria. In addition, we show that the steady-state distribu-

tion of the large-scale system energies is uniform leading to system energy equipartitioning

corresponding to a minimum ectropy and a maximum entropy equilibrium state.

2.2. A System Theoretic Foundation for Thermodynamics and its
Application to Control of Large-Scale Dynamical Systems

Energy is a concept that underlies our understanding of all physical phenomena and is a

measure of the ability of a dynamical system to produce changes (motion) in its own system

state as well as changes in the system states of its surroundings. Thermodynamics is a physi-

cal branch of science that deals with laws governing energy flow from one body to another and

energy transformations from one form to another. These energy flow laws are captured by

the fundamental principles known as the first and second laws of thermodynamics. The first

law of thermodynamics gives a precise formulation of the equivalence of heat and work and

states that among all system transformations, the net system energy is conserved. Hence,

energy cannot be created out of nothing and cannot be destroyed, merely transferred from

one form to another. The law of conservation of energy is not a mathematical truth, but

rather the consequence of an immeasurable culmination of observations over the chronicle of

our civilization and is a fundamental axiom of the science of heat. The first law does not tell

us whether any particular process can actually occur, that is, it does not restrict the ability

to convert work into heat or heat into work, except that energy must be conserved in the

process. The second law of thermodynamics asserts that while the system energy is always

conserved, it will be degraded to a point where it cannot produce any useful work. Hence,

it is impossible to extract work from heat without at the same time discarding some heat

giving rise to a monotonically increasing quantity known as entropy. While energy describes

the state of a dynamical system, entropy refers to changes in the status quo of the system

and is a measure of molecular disorder and the amount of wasted energy in a dynamical

(energy) transformation from one state (form) to another.

Since the specific motion of every molecule of a thermodynamic system is impossible to

predict, a macroscopic model of the system is typically used with appropriate macroscopic

states which include pressure, volume, temperature, internal energy, and entropy, among
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others. However, a thermodynamically consistent energy flow model should ensure that

the system energy can be modelled by a diffusion (conservation) equation in the form of

a parabolic partial differential equation. These systems are infinite-dimensional and hence

finite-dimensional approximations are of very high order giving rise to large-scale dynamical

systems. Since energy is a fundamental concept in the analysis of large-scale dynamical sys-

tems and heat (energy) is a fundamental concept of thermodynamics involving the capacity

of hot bodies (more energetic subsystems) to produce work, thermodynamics is a theory of

large-scale dynamical systems. High dimensional dynamical systems can arise from both

macroscopic and microscopic points of view. Microscopic thermodynamic models can have

the form of a distributed parameter model or a large-scale system model comprised of a

large number of interconnected subsystems. In contrast to macroscopic models involving the

evolution of global quantities (e.g., energy, temperature, entropy, etc.), microscopic models

are based upon the modeling of local quantities that describe the atoms and molecules that

make up the system, and their speeds, energies, masses, angular momenta, behavior during

collisions, etc. The mathematical formulations based on these quantities form the basis of

statistical mechanics. Since microscopic details are obscured on the macroscopic level, it is

appropriate to view a microscopic model as an inherent model of uncertainty. However, for

a thermodynamic system the macroscopic and microscopic quantities are related since they

are simply different ways of describing the same phenomena. Thus, if the global macroscopic

quantities can be expressed in terms of the local microscopic quantities, the laws of thermo-

dynamics could be described in the language of statistical mechanics. This interweaving of

the microscopic and macroscopic points of view lead to diffusion being a natural consequence

of dimensionality and, hence, uncertainty on the microscopic level despite the fact that there

is no uncertainty about the diffusion process per se.

In this research [31,45, 71], we place thermodynamics on a system-theoretic foundation.

Specifically, since thermodynamic models are concerned with energy flow among subsys-

tems, we develop a nonlinear compartmental dynamical system model that is characterized

by energy conservation laws capturing the exchange of energy between coupled macroscopic

subsystems. Furthermore, using graph theoretic notions we state two thermodynamic ax-

ioms consistent with the zeroth and second laws of thermodynamics that ensure that our

large-scale dynamical system model gives rise to a thermodynamically consistent energy flow

model. Specifically, using a large-scale dynamical systems theory perspective for thermody-

namics, we show that our compartmental dynamical system model leads to a precise formu-

lation of the equivalence between work energy and heat in a large-scale dynamical system.

Next, we give a deterministic definition of entropy for a large-scale dynamical system that is

consistent with the classical thermodynamic definition of entropy and show that it satisfies
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a Clausius-type inequality leading to the law of entropy nonconservation. Furthermore, we

introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency

of a large-scale dynamical system to do useful work and show that conservation of energy

in an isolated thermodynamically consistent system necessarily leads to nonconservation of

ectropy and entropy. Then, using the system ectropy as a Lyapunov function candidate we

show that our thermodynamically consistent large-scale nonlinear dynamical system model

possesses a continuum of equilibria and is semistable, that is, it has convergent subsystem

energies to Lyapunov stable energy equilibria determined by the large-scale system initial

subsystem energies. In addition, we show that the steady-state distribution of the large-

scale system energies is uniform leading to system energy equipartitioning corresponding

to a minimum ectropy and a maximum entropy equilibrium state. In Section 2.7 we show

how we use this new thermodynamic system framework to analyze and design decentralized

controllers for large-scale aerospace systems. The idea is to use two of the most fundamental

laws of Nature (conservation of energy and nonconservation of entropy) to design stabilizing

decentralized controllers (i.e., maximum entropy controllers) for large-scale aerospace sys-

tems that result in thermodynamically consistent closed-loop systems. In this case, stability

of the closed-loop large-scale system would be guaranteed automatically in the face of system

uncertainties.

2.3. Vector Dissipativity Theory for Large-Scale Hybrid Dynam-

ical Systems

Recent technological demands have required the analysis and control design of increas-

ingly complex, large-scale nonlinear dynamical systems. The complexity of modern con-

trolled large-scale dynamical systems is further exacerbated by the use of hierarchial em-

bedded control subsystems within the feedback control system, that is, abstract decision-

making units performing logical checks that identity system mode operation and specify the

continuous-variable subcontroller to be activated. Such systems typically possess a multiech-

elon hierarchical hybrid decentralized control architecture characterized by continuous-time

dynamics at the lower levels of the hierarchy and discrete-time dynamics at the higher levels

of the hierarchy. The lower-level units directly interact with the dynamical system to be con-

trolled while the higher-level units receive information from the lower-level units as inputs

and provide (possibly discrete) output commands which serve to coordinate and reconcile

the (sometimes competing) actions of the lower-level units. The hierarchical controller or-

ganization reduces processor cost and controller complexity by breaking up the processing

task into relatively small pieces and decomposing the fast and slow control functions. Typ-
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ically, the higher-level units perform logical checks that determine system mode operation,

while the lower-level units execute continuous-variable commands for a given system mode

of operation.

In analyzing hybrid large-scale dynamical systems it is often desirable to treat the over-

all system as a collection of interconnected subsystems. The behavior of the composite

hybrid large-scale system can then be predicted from the behaviors of the individual sub-

systems and their interconnections. The mathematical description of many of these systems

can be characterized by impulsive differential equations. In particular, general hybrid dy-

namical systems involve an abstract axiomatic definition of a dynamical system involving

left-continuous (or right-continuous) flows defined on a completely ordered time set as a

mapping between vector spaces satisfying an appropriate set of axioms and include hybrid

inputs and hybrid outputs that take their values in appropriate vector spaces. In contrast,

impulsive dynamical systems are a subclass of hybrid dynamical systems and consist of three

elements; namely, a continuous-time differential equation, which governs the motion of the

dynamical system between impulsive events; a difference equation, which governs the way

that the system states are instantaneously changed when an impulsive event occurs; and a

criterion for determining when the states are to be reset.

As discussed in Section 2.1, an approach to analyzing large-scale dynamical systems was

introduced by the pioneering work of Siljak and involves the notion of connective stability.

In particular, the large-scale dynamical system is decomposed into a collection of subsys-

tems with local dynamics and uncertain interactions. Then, each subsystem is considered

independently so that the stability of each subsystem is combined with the interconnection

constraints to obtain a vector Lyapunov function for the composite large-scale dynamical

system guaranteeing connective stability for the overall system. Vector Lyapunov functions

were first introduced by Bellman and Matrosov and further developed in the literature,

with exploiting their utility for analyzing large-scale systems. Extensions of vector Lya-

punov function theory that include matrix-valued Lyapunov functions for stability analysis

of large-scale dynamical systems appear in the monographs by Martynyuk. The use of vector

Lyapunov functions in large-scale system analysis offers a very flexible framework since each

component of the vector Lyapunov function can satisfy less rigid requirements as compared

to a single scalar Lyapunov function. Weakening the hypothesis on the Lyapunov function

enlarges the class of Lyapunov functions that can be used for analyzing the stability of large-

scale dynamical systems. In particular, each component of a vector Lyapunov function need

not be positive definite with a negative or even negative-semidefinite derivative. The time

derivative of the vector Lyapunov function need only satisfy an element-by-element vector

inequality-involving a vector field of a certain comparison system.
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In light of the fact that energy flow modeling arises naturally in large-scale dynamical

systems and vector Lyapunov functions provide a powerful stability analysis framework for

these systems, it seems natural that hybrid dissipativity theory, on the subsystem level,

should play a key role in analyzing large-scale impulsive dynamical systems. Specifically,

hybrid dissipativity theory provides a fundamental framework for the analysis and design

of impulsive dynamical systems using an input-output description based on system energy'

related considerations. The hybrid dissipation hypothesis on impulsive dynamical systems

results in a fundamental constraint on their dynamic behavior wherein a dissipative im-

pulsive dynamical system can only deliver a fraction of its energy to its surroundings and

can only store a fraction of the work done to it. Such conservation laws are prevalent in

large-scale impulsive dynamical systems such as aerospace systems, power systems, network

systems, telecommunications systems, and transportation systems. Since these systems have

numerous input-output properties related to conservation, dissipation, and transport of en-

ergy, extending hybrid dissipativity theory to capture conservation and dissipation notions

on the subsystem level would provide a natural energy flow model for large-scale impulsive

dynamical systems. Aggregating the dissipativity properties of each of the impulsive subsys-

tems by appropriate storage functions and hybrid supply rates would allow us to study the

dissipativity properties of the composite large-scale impulsive system using vector storage

functions and vector hybrid supply rates. Furthermore, since vector Lyapunov functions can

be viewed as generalizations of composite energy functions for all of the impulsive subsys-

tems, a generalized notion of hybrid dissipativity; namely, vector hybrid dissipativity, with

appropriate vector storage functions and vector hybrid supply rates, can be used to construct

vector Lyapunov functions for nonlinear feedback large-scale impulsive systems by appropri-

ately combining vector storage functions for the forward and feedback large-scale impulsive

systems. Finally, as in classical dynamical system theory, vector dissipativity theory can

play a fundamental role in addressing robustness, disturbance rejection, stability of feedback

interconnections, and optimality for large-scale impulsive dynamical systems.

In this. research [20], we develop vector dissipativity notions for large-scale nonlinear im-

pulsive dynamical systems; a notion not previously considered in the literature. In particular,

we introduce a generalized definition of dissipativity for large-scale nonlinear impulsive dy-

namical systems in terms of a hybrid vector inequality involving a vector hybrid supply rate, a

vector storage function, and an essentially nonnegative, semistable dissipation matrix. Gen-

eralized notions of vector available storage and vector required supply are also defined and

shown to be element-by-element ordered, nonnegative, and finite. On the impulsive subsys-

1Here the notion of energy refers to abstract energy for which a physical system energy interpretation is
not necessary.
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tem level, the proposed approach provides an energy flow balance over the continuous-time

dynamics and the resetting events in terms of the stored subsystem energy, the supplied

subsystem energy, the subsystem energy gained from all other subsystems independent of

the subsystem coupling strengths, and the subsystem energy dissipated. Furthermore, for

large-scale impulsive dynamical systems decomposed into interconnected impulsive subsys-

tems, dissipativity of the composite impulsive system is shown to be determined from the

dissipativity properties of the individual impulsive subsystems and the nature of the inter-

connections. In addition, we develop extended Kalman-Yakubovich-Popov conditions, in

terms of the local impulsive subsystem dynamics and the interconnection constraints, for

characterizing vector dissipativeness via vector storage functions for large-scale impulsive

dynamical systems. Using the concepts of vector dissipativity and vector storage functions

as candidate vector Lyapunov functions, we develop feedback interconnection stability results

of large-scale impulsive nonlinear dynamical systems. General stability criteria are given for

Lyapunov and asymptotic stability of feedback large-scale impulsive dynamical systems. In

the case of vector quadratic supply rates involving net subsystem powers and input-output

subsystem energies, these results provide a positivity and small gain theorem for large-scale

impulsive systems predicated on vector Lyapunov functions.

2.4. Vector Dissipativity Theory for Discrete-Time Large-Scale

Dynamical Systems

Since most physical processes evolve naturally in continuous-time, it is not surprising

that the bulk of large-scale dynamical system theory has been developed for continuous-

time systems. Nevertheless, it is the overwhelming trend to implement controllers digitally.

Hence, in this research [13] we extend the notions of dissipativity theory to develop vector

dissipativity notions for large-scale nonlinear discrete-time dynamical systems. In particular,

we introduce a generalized definition of dissipativity for large-scale nonlinear discrete-time

dynamical systems in terms of a vector inequality involving a vector supply rate, a vector

storage function, and a nonnegative, semistable dissipation matrix. Generalized notions of

vector available storage and vector required supply are also defined and shown to be element-

by-element ordered, nonnegative, and finite. On the subsystem level, the proposed approach

provides a discrete energy flow balance in terms of the stored subsystem energy, the sup-

plied subsystem energy, the subsystem energy gained from all other subsystems independent

of the subsystem coupling strengths, and the subsystem energy dissipated. Furthermore,

for large-scale discrete-time dynamical systems decomposed into interconnected subsystems,

dissipativity of the composite system is shown to be determined from the dissipativity prop-
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erties of the individual subsystems and the nature of the interconnections. In particular,

we develop extended Kalman-Yakubovich-Popov conditions, in terms of the local subsystem

dynamics and the interconnection constraints, for characterizing vector dissipativeness via

vector storage functions for large-scale discrete-time dynamical systems. Finally, using the

concepts of vector dissipativity and vector storage functions as candidate vector Lyapunov

functions, we develop feedback interconnection stability results of large-scale discrete-time

nonlinear dynamical systems. General stability criteria are given for Lyapunov and asymp-

totic stability of feedback interconnections of large-scale discrete-time dynamical systems. In

the case of vector quadratic supply rates involving net subsystem powers and input-output

subsystem energies, these results provide a positivity and small gain theorem for large-scale

discrete-time systems predicated on vector Lyapunov functions.

2.5. Thermodynamic Modeling for Discrete-Time Dynamical Sys-

tems

Thermodynamic principles have been repeatedly used in continuous-time dynamical sys-

tem theory as well as information theory for developing models that capture the exchange

of nonnegative quantities (e.g., mass and energy) between coupled subsystems. In particu-

lar, conservation laws (e.g., mass and energy) are used to capture the exchange of material

between coupled macroscopic subsystems known as compartments. Each compartment is

assumed to be kinetically homogeneous, that is, any material entering the compartment is

instantaneously mixed with the material in the compartment. These models are known as

compartmental models and are widespread in engineering systems as well as biological and

ecological sciences. Even though the compartmental models developed in the literature are

based on the first law of thermodynamics involving conservation of energy principles, they

do not tell us whether any particular process can actually occur; that is, they do not address

the second law of thermodynamics involving entropy notions in the energy flow between

subsystems.

The goal of this research [29] is directed toward developing nonlinear discrete-time com-

partmental models that are consistent with thermodynamic principles. Specifically, since

thermodynamic models are concerned with energy flow among subsystems, we develop a non-

linear compartmental dynamical system model that is characterized by energy conservation

laws capturing the exchange of energy between coupled macroscopic subsystems. Further-

more, using graph theoretic notions we state three thermodynamic axioms consistent with

the zeroth and second laws of thermodynamics that ensure that our large-scale dynamical

system model gives rise to a thermodynamically consistent energy flow model. Specifically,
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using a large-scale dynamical systems theory perspective, we show that our compartmen-

tal dynamical system model leads to a precise formulation of the equivalence between work

energy and heat in a large-scale dynamical system.

Next, we give a deterministic definition of entropy for a large-scale dynamical system that

is consistent with the classical thermodynamic definition of entropy and show that it satisfies

a Clausius-type inequality leading to the law of entropy nonconservation. Furthermore, we

introduce a new and dual notion to entropy, namely, ectropy, as a measure of the tendency

of a large-scale dynamical system to do useful work and grow more organized, and show

that conservation of energy in an isolated thermodynamically consistent system necessarily

leads to nonconservation of ectropy and entropy. Then, using the system ectropy as a

Lyapunov function candidate we show that our thermodynamically consistent large-scale

nonlinear dynamical system model possesses a continuum of equilibria and is semistable, that

is, it has convergent subsystem energies to Lyapunov stable energy equilibria determined by

the large-scale system initial subsystem energies. In addition, we show that the steady-

state distribution of the large-scale system energies is uniform leading to system energy

equipartitioning corresponding to a minimum ectropy and a maximum entropy equilibrium

state. In the case where the subsystem energies are proportional to subsystem temperatures,

we show that our dynamical system model leads to temperature equipartition wherein all

the system energy is transferred into heat at a uniform temperature. Furthermore, we show

that our system-theoretic definition of entropy and the newly proposed notion of ectropy

are consistent with Boltzmann's kinetic theory of gases involving an n-body theory of ideal

gases divided by diathermal walls. As in the case of continuous-time systems (see Section 2.7)

this new thermodynamic system framework can be used to analyze and design decentralized

controllers for discrete-time large-scale systems.

2.6. Stability Analysis and Control Design of Nonlinear Dynami-

cal Systems via Vector Lyapunov Functions

One of the most basic issues in system theory is the stability of dynamical systems. The

most complete contribution to the stability analysis of nonlinear dynamical systems is due

to Lyapunov. Lyapunov's results, along with the Krasovskii-LaSalle invariance. principle,

provide a powerful framework for analyzing the stability of nonlinear dynamical systems.

Lyapunov methods have also been used by control system designers to obtain stabilizing

feedback controllers for nonlinear systems. In particular, for smooth feedback, Lyapunov-

based methods were inspired by Jurdjevic and Quinn who give sufficient conditions for

smooth stabilization based on the ability of constructing a Lyapunov function for the closed-
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loop system. More recently, Artstein introduced the notion of a control Lyapunov function

whose existence guarantees a feedback control law which globally stabilizes a nonlinear dy-

namical system. In general, the feedback control law is not necessarily smooth, but can be

guaranteed to be at least continuous at the origin in addition to being smooth everywhere

else. Even though for certain classes of nonlinear dynamical systems a universal construction

of a feedback stabilizer can be obtained using control Lyapunov functions, there does not

exist a unified procedure for finding a Lyapunov function candidate that will stabilize the

closed-loop system for general nonlinear systems.

In an attempt to simplify the construction of Lyapunov functions for the analysis and

control design of nonlinear dynamical systems, several researchers have resorted to vector

Lyapunov functions as an alternative to scalar Lyapunov functions. The use of vector Lya-

punov functions in dynamical system theory offers a very flexible framework since each

component of the vector Lyapunov function can satisfy less rigid requirements as compared

to a single scalar Lyapunov function. Weakening the hypothesis on the Lyapunov function

enlarges the class of Lyapunov functions that can be used for analyzing system stability.

In particular, each component of a vector Lyapunov function need not be positive definite

with a negative or even negative-semidefinite derivative. Alternatively, the time derivative of

the vector Lyapunov function need only satisfy an element-by-element inequality involving

a vector field of a certain comparison system. Since in this case the stability properties of

the comparison system imply the stability properties of the dynamical system, the use of

vector Lyapunov theory can. significantly reduce the complexity (i.e., dimensionality) of the

dynamical system being analyzed.

In this research [33], we extend the theory of vector Lyapunov functions in several direc-

tions. Specifically, we construct a generalized comparison system whose vector field can be

a function of the comparison system states as well as the nonlinear dynamical system states.

Next, using partial stability notions for the comparison system we provide sufficient condi-

tions for stability of the nonlinear dynamical system. In addition, we present a convergence

result reminiscent to the invariance principle that allows us to weaken the hypothesis on

the comparison system while guaranteeing asymptotic stability of the nonlinear dynamical

system via vector Lyapunov functions. Furthermore, we introduce the notion of a control

vector Lyapunov function as a generalization of control Lyapunov functions and show that

asymptotic stabilizability of a nonlinear dynamical system is equivalent to the existence of

a control vector Lyapunov function. In addition, using control vector Lyapunov functions,

we present a universal decentralized feedback stabilizer for a decentralized affine in the con-

trol nonlinear dynamical system with guaranteed gain and sector margins. Furthermore, we

establish connections between vector dissipativity notions [16, 21] and inverse optimality of
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decentralized nonlinear regulators. These results are then used to develop decentralized con-

trollers for large-scale dynamical systems with robustness guarantees against full modeling

and input uncertainty.

2.7. Thermodynamic Stabilization via Energy Dissipating Hybrid

Controllers

Energy is a concept that underlies our understanding of all physical phenomena and is a

measure of the ability of a dynamical system to produce changes (motion) in its own system

state as well as changes in the system states of its surroundings. In control engineering,

dissipativity theory, which encompasses passivity theory, provides a fundamental framework

for the analysis and control design of dynamical systems using an input-output system de-

scription based on system energy related considerations. The notion of energy here refers to

abstract energy notions for which a physical system energy interpretation is not necessary.

The dissipation hypothesis on dynamical systems results in a fundamental constraint on their

dynamic behavior, wherein a dissipative dynamical system can only deliver a fraction of its

energy to its surroundings and can only store a fraction of the work done to it. Thus, dissipa-

tivity theory provides a powerful framework for the analysis and control design of dynamical

systems based on generalized energy considerations by exploiting the notion that numerous

physical systems have certain input-output properties related to conservation, dissipation,

and transport of energy. Such conservation laws are prevalent in dynamical systems such as

aerospace systems, mechanical systems, fluid systems, electromechanical systems, electrical

systems, combustion systems, structural vibration systems, biological systems, physiological

systems, power systems, telecommunications systems, and economic systems, to cite but a

few examples.

Energy-based control for Euler-Lagrange dynamical systems and Hamiltonian dynamical

systems based on passivity notions has received considerable attention in the literature.

This controller design technique achieves system stabilization by shaping the energy of the

closed-loop system which involves the physical system energy and the controller, emulated

energy. Specifically, energy shaping is achieved by modifying the system potential energy in

such a way so that the shaped potential energy function for the closed-loop system possesses

a unique global minimum at a desired equilibrium point. Next, damping is injected via

feedback control modifying the system dissipation to guarantee asymptotic stability of the

closed-loop system. A central feature of this energy-based stabilization approach is that

the Lagrangian system form is preserved at the closed-loop system level. Furthermore,

the control action has a clear physical energy interpretation, wherein the total energy of
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the closed-loop Euler-Lagrange system corresponds to the difference between the physical

system energy and the emulated energy supplied by the controller.

More recently, a passivity-based control framework for port-controlled Hamiltonian sys-

tems is established in the literature. Specifically, control researchers have developed a con-

troller design methodology that achieves stabilization via system passivation. In particular,

the interconnection and damping matrix functions of the port-controlled Hamiltonian system

are shaped so that the physical (Hamiltonian) system structure is preserved at the closed-

loop level, and the closed-loop energy function is equal to the difference between the physical

energy of the system and the energy supplied by the controller. Since the Hamiltonian struc-

ture is preserved at the closed-loop level, the passivity-based controller is robust with respect

to unmodeled passive dynamics. Furthermore, passivity-based control architectures are ex-

tremely appealing since the control action has a clear physical energy interpretation which

can considerably simplify controller implementation.

In this research [34,36,54], we develop a novel energy dissipating hybrid control framework

for Lagrangian, port-controlled Hamiltonian, lossless, and dissipative dynamical systems.

These dynamical systems cover a very broad spectrum of applications including aerospace,

mechanical, electrical, electromechanical, structural, biological, and power systems. The

fixed-order, energy-based hybrid controller is a hybrid controller that emulates an approx-

imately lossless dynamical system and exploits the feature that the states of the dynamic

controller may be reset to enhance the overall energy dissipation in the closed-loop system.

An important feature of the hybrid controller is that its structure can be associated with

an energy function. In a mechanical Euler-Lagrange system, positions typically correspond

to elastic deformations, which contribute to the potential energy of the system, whereas

velocities typically correspond to momenta, which contribute to the kinetic energy of the

system. On the other hand, while our energy-based hybrid controller has dynamical states

that emulate the motion of a physical lossless system, these states only "exist" as numeri-

cal representations inside the processor. Consequently, while one can associate an emulated

energy with these states, this energy is merely a mathematical construct and does not cor-

respond to any physical form of energy.

The concept of an energy-based hybrid controller can be viewed as a feedback control

technique that exploits the coupling between a physical dynamical system and an energy-

based controller to efficiently remove energy from the physical system. Specifically, if a

dissipative or lossless plant is at high energy level, and a lossless feedback controller at a

low energy level is attached to it, then energy will generally tend to flow from the plant into

the controller, decreasing the plant energy and increasing the controller energy. Of course,
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emulated energy, and not physical energy, is accumulated by the controller. Conversely,

if the attached controller is at a high energy level and a plant is at a low energy level,

then energy can flow from the controller to the plant, since a controller can generate real,

physical energy to effect the required energy flow. Hence, if and when the controller states

coincide with a high emulated energy level, then we can reset these states to remove the

emulated energy so that the emulated energy is not returned to the plant. In this case, the

overall closed-loop system consisting of the plant and the controller possesses discontinuous

flows since it combines logical switchings with continuous dynamics, leading to impulsive

differential equations.

Impulsive dynamical systems can be viewed as a subclass of hybrid systems and consist

of three elements; namely, a continuous-time differential equation, which governs the motion

of the dynamical system between impulsive or resetting events; a difference equation, which

governs the way the system states are instantaneously changed when a resetting event occurs;

and a criterion for determining when the states of the system are to be reset. As discussed in

[54], energy-based hybrid controllers can involve two distinct forms for the resetting criterion,

or resetting set. Specifically, the resetting set can be defined by a prescribed periodic sequence

of times which are independent of the states of the closed-loop system. These controllers

are thus called time-dependent hybrid controllers. Alternatively, the resetting set can be

defined by a region in the state space that is independent of time. Here, the resetting

action guarantees that the plant energy is strictly decreasing across resetting events. These

controllers are called state-dependent hybrid controllers.

In this research, a novel class of fixed-order, energy-based hybrid controllers is developed

as a means for achieving enhanced energy dissipation in Euler-Lagrange, port-controlled

Hamiltonian, and lossless dynamical systems. These dynamic controllers combine a logical

switching architecture with continuous dynamics to guarantee that the system plant energy

is strictly decreasing across switchings. In addition, we construct hybrid dynamic controllers

that guarantee that the closed-loop system is consistent with basic thermodynamic principles.

In particular, the existence of an entropy function for the closed-loop system is established

that satisfies a hybrid Clausius-type inequality. Special cases of energy-based hybrid con-

trollers involving state-dependent switching are described, and the framework is applied to

large-scale aerospace system models. The overall framework demonstrates that energy-based

hybrid resetting controllers provide an extremely efficient mechanism for dissipating energy

in large-scale systems (See Figures 1 and 2).
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Figure 1: This plot shows the time his-
tory of the energy components of the plant, Figure 2: This plot shows the closed-loop
emulated controller energy, and total en- system entropy as a function of time. Note
ergy for a nonlinear large-scale Lienard sys- that the entropy of the closed-loop system
tem controlled by a hybrid thermodynamic strictly increases between resetting events.
controller.

2.8. Hybrid Adaptive Control for Nonlinear Uncertain Impulsive
Dynamical Systems

Modern complex engineering systems involve multiple modes of operation placing strin-

gent demands on controller design and implementation of increasing complexity. Such sys-

tems typically possess a multiechelon hierarchical hybrid control architecture characterized

by continuous-time dynamics at the lower levels of the hierarchy and discrete-time dynamics

at the higher levels of the hierarchy. The lower-level units directly interact with the dynamical

system to be controlled while the higher-level units receive information from the lower-level

units as inputs and provide (possibly discrete) output commands which serve to coordinate

and reconcile the (sometimes competing) actions of the lower-level units. The hierarchical

controller organization reduces processor cost and controller complexity by breaking up the

processing task into relatively small pieces and decomposing the fast and slow control func-

tions. Typically, the higher-level units perform logical checks that determine system mode

operation, while the lower-level units execute continuous-variable commands for a given sys-

tem mode of operation. The mathematical description of many of these systems can be

characterized by impulsive differential equations.

The ability of developing a hierarchical nonlinear integrated hybrid control-system design

methodology for robust, high performance controllers satisfying multiple design criteria and

real-world hardware constraints is imperative in light of the increasingly complex nature

of dynamical systems requiring controls such as advanced high performance tactical fighter

aircraft, variable-cycle gas turbine engines, biological and physiological systems, sampled-
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data systems, discrete-event systems, intelligent vehicle/highway systems, and flight control

systems, to cite but a few examples. The inherent severe nonlinearities and uncertainties

of these systems and the increasingly stringent performance requirements required for con-

trolling such modern complex embedded systems necessitates the development of hybrid

adaptive nonlinear control methodologies.

Even though adaptive control algorithms have been extensively developed in the litera-

ture for both continuous-time and discrete-time systems, hybrid adaptive control algorithms

for hybrid dynamical systems are nonexistent. In this research [27], we develop a direct

hybrid adaptive control framework for nonlinear uncertain impulsive dynamical systems. In

particular, a Lyapunov-based hybrid adaptive control framework is developed that guaran-

tees partial asymptotic stability of the closed-loop hybrid system, that is, asymptotic stability

with respect to part of the closed-loop system states associated with the hybrid plant dy-

namics. Furthermore, the remainder of the state associated with the adaptive *controller

gains is shown to be Lyapunov stable. Next, using the hybrid invariance principle developed

by the Principal Investigator and his coworkers, we relax several of the conditions needed for

guaranteeing partial asymptotic stabilization to develop an alternative less restrictive hybrid

adaptive control framework that guarantees attraction of the closed-loop system states as-

sociated with the hybrid plant dynamics. In this case, the remainder of the state associated

with the hybrid adaptive controller gains is shown to be bounded. In the case where the non-

linear hybrid system is represented in a hybrid normal form, the nonlinear hybrid adaptive

controllers are constructed without requiring knowledge of the hybrid system dynamics.

2.9. Neural Network Adaptive Control for Nonlinear Nonnegative
Dynamical Systems

One of the primary reasons for the large interest in neural networks is their capability

to approximate a large class of continuous nonlinear maps from the collective action of very

simple, autonomous processing units interconnected in simple ways. Neural networks have

also attracted attention due to their inherently parallel and highly redundant processing

architecture that makes it possible to develop parallel weight update laws. This parallelism

makes it possible to effectively update a neural network on line. These properties make

neural networks a viable paradigm for adaptive system identification and control of complex

highly uncertain dynamical systems, and as a consequence the use of neural networks for

identification and control has become an active area of research.

Modern complex engineering systems as well as biological and physiological systems are

highly interconnected and mutually interdependent, both physically and through a multi-
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tude of information and communication networks. By properly formulating these systems

in terms of subsystem interaction and energy/mass transfer, the dynamical models of many

of these systems can be derived from mass, energy, and information balance considerations

that involve dynamic states whose values are nonnegative. Hence, it follows from physical

considerations that the state trajectory of such systems remains in the nonnegative orthant

of the state space for nonnegative initial conditions. Such systems are commonly referred

to as nonnegative dynamical systems in the literature. A subclass of nonnegative dynamical

systems are compartmental systems. Compartmental systems involve dynamical models that

are characterized by conservation laws (e.g., mass and energy) capturing the exchange of ma-

terial between coupled macroscopic subsystems known as compartments. Each compartment

is assumed to be kinetically homogeneous, that is, any material entering the compartment

is instantaneously mixed with the material of the compartment. The range of application

of nonnegative systems and compartmental systems is quite large and includes biological,

ecological, and chemical systems. Due to the severe complexities, nonlinearities, and uncer-

tainties inherent in these systems, neural networks provide an ideal framework for on-line

adaptive control because of their parallel processing flexibility and adaptability.

In this research [24, 25], we develop a full-state feedback neural adaptive control frame-

work for set-point regulation of nonlinear uncertain nonnegative and compartmental systems.

Nonzero set-point regulation for nonnegative dynamical systems is a key design requirement

since stabilization of nonnegative systems naturally deals with equilibrium points in the inte-

rior of the nonnegative orthant. The proposed framework is Lyapunov-based and guarantees

ultimate boundedness of the error signals corresponding to the physical system states as well

as the neural network weighting gains. The neuro adaptive controllers are constructed with-

out requiring knowledge of the system dynamics while guaranteeing that the physical system

states remain in the nonnegative orthant of the state space. The proposed neuro control ar-

chitecture is modular in the sense that if a nominal linear design model is available, the neuro

adaptive controller can be augmented to the nominal design to account for system nonlin-

earities and system uncertainty. Furthermore, since in certain applications of nonnegative

and compartmental systems (e.g., pharmacological systems for active drug administration)

control (source) inputs as well as the system states need to be nonnegative, we also develop

neuro adaptive controllers that guarantee the control signal as well as the physical system

states remain nonnegative for nonnegative initial conditions. We note that neuro adaptive

controllers for nonnegative dynamical systems have not been addressed in the literature.

Finally, the proposed neuro adaptive control framework is used to regulate the temperature

of a continuously stirred tank reactor involving exothermic irreversible reactions.
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2.10. Adaptive Control for General Anesthesia and Intensive Care
Unit Sedation

Even though advanced robust and adaptive control methodologies have been (and are

being) extensively developed for highly complex engineering systems, modern active control

technology has received far less consideration in medical systems. The main reason for this

state of affairs is the steep barriers to communication between mathematics/control engineer-

ing and medicine. However, this is slowly changing and there is no doubt that control-system

technology has a great deal to offer medicine. For example, critical care patients, whether

undergoing surgery or recovering in intensive care units, require drug administration to reg-
ulate key physiological (state) variables (e.g., blood pressure, temperature, glucose; degree of

consciousness, etc.) within desired levels. The rate of infusion of each administered drug is

critical, requiring constant monitoring and frequent adjustments. Open-loop control (man-

ual control) by clinical personnel can be very tedious, imprecise, time consuming, and often

of poor quality. Hence, the need for active control (closed-loop control) in medical systems

is severe; with the potential in improving the quality of medical care as well as curtailing

the increasing cost of health care.

The complex highly uncertain and hostile environment of surgery places stringent per-

formance requirements for closed-loop set-point regulation of physiological variables. For

example, during cardiac surgery, blood pressure control is vital and is subject to numerous

highly uncertain exogenous disturbances. Vasoactive and cardioactive drugs are adminis-

tered resulting in large disturbance oscillations to the system (patient). The arterial line

may be flushed and blood may be drawn, corrupting sensor blood pressure measurements.

Low anesthetic levels may cause the patient to react to painful stimuli, thereby changing

system (patient) response characteristics. The flow rate of vasodilator drug infusion may

fluctuate causing transient changes in the infusion delay time. Hemorrhage, patient position

changes, cooling and warming of the patient, and changes in anesthesia levels will also effect

system (patient) response characteristics.

In light of the complex and highly uncertain nature of system (patient) response char-

acteristics under surgery requiring controls, it is not surprising that reliable system mod-

els for many high performance drug delivery systems are unavailable. In the face of such

high levels of system uncertainty, robust controllers may unnecessarily sacrifice system per-

formance whereas adaptive controllers are clearly appropriate since they can tolerate far

greater system uncertainty levels to improve system performance. In contrast to fixed-gain

robust controllers, which maintain specified constants within the feedback control law to sus-

tain robust performance, adaptive controllers directly or indirectly adjust feedback gains to
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maintain closed-loop stability and improve performance in the face of system uncertainties.

Specifically, indirect adaptive controllers utilize parameter update laws to identify unknown

system parameters and adjust feedback gains to account for system variation, while direct

adaptive controllers directly adjust the controller gains in response to system variations.

In this research [26], we developed a direct adaptive control framework for adaptive

set-point regulation for uncertain nonnegative and compartmental systems. As noted in

Section 2..9, nonnegative and compartmental dynamical systems are composed of homoge-

neous interconnected subsystems (or compartments) which exchange variable nonnegative

quantities of material with conservation laws describing transfer, accumulation, and outflows

between the compartments and the environment. Nonnegative and compartmental models

thus play a key role in understanding many processes in biological and medical sciences.

Using nonnegative and compartmental model structures, a Lyapunov-based direct adaptive

control framework is developed that guarantees partial asymptotic set-point stability of the

closed-loop system. In particular, adaptive controllers are constructed without requiring

knowledge of the system dynamics while providing a nonnegative control (source) input for

robust stabilization with respect to the nonnegative orthant. Modeling uncertainty in non-

negative and compartmental systems may arise in the system transfer coefficients due to

patient gender, weight, pre-existing disease, age, and concomitant medication. Furthermore,

in certain applications of nonnegative and compartmental systems such as biological sys-

tems, population dynamics, and ecological systems involving positive and negative inflows,

the nonnegativity constraint on the control input is not natural. In this case, we also develop

adaptive controllers that do not place any restriction on the sign of the control signal while

guaranteeing that the physical system states remain in the nonnegative orthant of the state

space. Finally, the proposed approach was used to control the infusion of the anesthetic

drug propofol for maintaining a desired constant level of depth of anesthesia for noncardiac

surgery (see Figures 3 and 4).

2.11. Neural Network Adaptive Control for Intensive Care Unit
Sedation and Intraoperative Anesthesia

Control engineering has impacted almost every aspect of modern life, with applications

ranging from relatively simple systems, such as thermostats and automotive cruise control,

to highly complex systems, such as advanced tactical fighter aircraft and variable-cycle gas

turbine aeroengines. Control technology has also had an impact on modern medicine in

areas such as robotic surgery, electrophysiological systems (pacemakers and automatic im-

plantable defibrillators), life support (ventilators, artificial hearts), and image-guided therapy
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and surgery. However, there remain barriers to the application of modern control theory and

technology to medicine. These barriers include system uncertainties, inherent to biology,

that limit*mathematical modeling and the ability to apply many of the tools of modern con-

trol technology. An additional impediment is the relatively limited communication between

control engineers and the medical community. One area of medicine most suited for applica-

tions of control technology is clinical pharmacology in which mathematical modeling has had

a predominant role. This discipline includes pharmacokinetics, the relationship betwveen drug

dose and the resultant tissue concentrations as a function of time, and pharmacodynamics,

the relationship between tissue concentration and drug effect. The mathematical foundation

for pharmacokinetic and pharmacodynamic modeling is nonnegative and compartmental dy-

namical systems theory and so it is easy to see why control theory and technology may have

much to offer clinical pharmacology.

It has long been appreciated that if one can identify a physiological variable that quan-

tifies therapeutic drug effect and measure it continuously in real-time, it should be possible

to utilize 'feedback (closed-loop) control, implemented with a computer, to maintain this

variable, and hence the drug effect, at the desired value. By their very nature, cardiovas-

cular and central nervous functions are critical in the acute care environment, such as the

operating room or the intensive care unit, and hence mature technologies have evolved for

their quantitative assessment. For this reason the primary application of closed-lobp control

of drug administration has been to hemodynamic management and, more recently, to control

of levels of consciousness. As an example of the former application, the technology for the

continuous measurement of blood pressure has been available for some time and systems
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have been developed to maintain blood pressure at the desired value in the operating room

and intensive care unit.

The primary interest of our research has been in closed-loop control of the level of con-

sciousness. While there is direct application of this research to the clinical task of operating

room anesthesia, an application with potentially more impact is closed-loop control of level

of consciousness of patients in intensive care units (ICU). Mechanical ventilation is uncom-

fortable and causes anxiety in the patient. Appropriate sedation of mechanically yentilated

ICU patients is very challenging. The common clinical scenario is a patient who is either

under sedated and "fighting the ventilator" or is over sedated, with concomitant sequelae

such as hypotension or prolonged emergence from sedation when it is deemed appropriate to

begin weaning the patient from the ventilator. We can envision a future in which infusion

pumps contain a small computer chip that allow the ICU nurse to connect the patient to

some monitor of level of consciousness, feed the signal into the chip, which then drives the

pump to titrate intravenous hypnotic drugs to the appropriate level of sedation. Given the

shortage of experienced ICU nurses, we believe this would be a significant advance, allowing

clinicians to focus on tasks other than titrating sedation.

In this research [32,48], we extend the results to nonnegative and compartmental dynam-

ical systems with applications to the specific problem of automated anesthesia. Specifically,

we develop an output feedback neural network adaptive controller that operates over.a tapped

delay line of available input and output measurements. The neuro adaptive laws for the

neural network weights are constructed using a linear observer for the nominal normal form

system error dynamics. The approach is applicable to a general class of nonlinear nonnega-

tive dynamical systems without imposing a strict positive real requirement on the transfer

function of the linear error normal form dynamics. Furthermore, since in pharmacological

applications involving active drug administration control inputs as well as the system states

need to be nonnegative, the proposed neuro adaptive output feedback controller also guar-

antees that the control signal as well as the physiological system states remain nonnegative.

We emphasize that the proposed framework addresses adaptive output feedback controllers

for nonlinear nonnegative and compartmental systems with unmodeled dynamics of unknown

dimension while guaranteing ultimate boundedness of the error signals corresponding to the

physical system states as well as the neural network weighting gains. Output feedback con-

trollers are crucial in clinical pharmacology since key physiological (state) variables cannot

be measured in practice or in real time.
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2.12. Adaptive Control of Mammillary Drug Delivery Systems
with Actuator Amplitude Constraints and System Time De-

lays

Compartmental models play a key role in the understanding of many processes in bi-

ological and medical sciences. In many compartmental system models, transfers between

compartments are assumed to be instantaneous, that is, the model does not account for

material in' transit. Even though this is a valid assumption for certain biological and physio-

logical systems, it is not true in general; especially in pharmacokinetic and pharmacodynamic

models. For example, if a bolus (impulsive) dose of drug is injected and we seek its concentra-

tion level in the extracellular and intercellular space of some organ, a time lag exists before it

is detected in that organ. In this case, assuming instantaneous mass transfer between com-

partments will yield erroneous models. Although mixing times can be modeled by including

additional compartments in series, even this model assumes instantaneous mixing in the ini-

tial compartment. To accurately describe the distribution of pharmacological agents in the

human body, it is necessary to include in any mathematical compartmental pharmacokinetic

model information of the past system states. In this case, the state of the system at any

given time involves a piece of trajectories in the space of continuous functions defined on

an interval in the nonnegative orthant. This of course leads to (infinite-dimensiohal) delay

dynamical systems.

Since compartmental models provide a broad framework for biological and physiolog-

ical systems, including clinical pharmacology, they are well suited for developing models

for closed-loop control of drug administration. However, given the significant magnitude of

intrapatient and interpatient variability, and the fact that an individual patient's drug sensi-

tivity varies with time, adaptive control for active drug administration is clearly essential. In

recent research [26], we developed an adaptive control algorithm using the electroencephalo-

gram (EEG) as an objective, quantitative measure of consciousness for closed-loop control

of anesthesia. An implicit assumption inherent in [26] is that the control law is implemented

without any regard to actuator amplitude and rate saturation constraints. Of course, any

electromechanical control actuation device (syringe pump) is subject to amplitude and/or

rate constraints leading to saturation nonlinearities enforcing limitations on control ampli-

tude and 'control rates. More importantly, in pharmacological applications, drug infusion

rates can vary from patient to patient, and, to avoid overdosing, it is vital that the infusion

rate does not exceed the patient-specific threshold values. As a consequence, control con-

straints, that is, infusion pump rate constraints, need to be accounted for in drug delivery

systems.
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In this research [30], we extend the results of [26] to the case of compartmental dynamical

systems with unknown system time delays and control amplitude constraints. Specifically,

we develop a Lyapunov-Krasovskii-based direct adaptive control framework for guaranteeing

set-point regulation for linear uncertain compartmental dynamical systems with unknown

time delay and control amplitude constraints. The specific focus of [30] is on pharma-

cokinetic models and their applications to drug delivery systems. Since the most common

pharmacokinetic models are linear and mammillary, that is, models comprised of a central

compartment from which there is outflow from the system and which exchanges material re-

versibly with one or more peripheral compartments, we develop direct adaptive controllers for

mammillary systems. Finally, we numerically demonstrate the framework on a drug delivery

model for .general anesthesia that involves system time delays as well as control infusion rate

constraints.

2.13. Optimal Fixed-Structure Control for Nonnegative Dynami-
cal Systems

In this research [10], we develop optimal output feedback controllers for set-point regula-

tion of linear nonnegative and compartmental dynamical systems. In particular, 'we extend

the optimal fixed-structure control framework to develop optimal output feedback controllers

that guarantee that the trajectories of the closed-loop plant system states remain in the non-

negative orthant of the state space for nonnegative initial conditions. The proposed optimal

fixed-structure control framework is a constrained optimal control methodology that does

not seek to optimize a performance measure per se, but rather seeks to optimize perfor-

mance within a class of fixed-structure controllers satisfying internal controller constraints

that guarantee the nonnegativity of the closed-loop plant system states. Furthermore, since

unconstrained optimal controllers are globally optimal but may not guarantee nonnegativity

of the closed-loop plant system states, we additionally characterize domains of attraction con-

tained in the nonnegative orthant for unconstrained optimal output feedback controllers that

guarantee nonnegativity of the closed-loop plant system trajectories. Specifically, domains

of attraction contained in the nonnegative orthant for optimal output feedback controllers

are computed using closed and open Lyapunov level surfaces. It is also shown that the

domains of attraction predicated on open Lyapunov level surfaces provide a considerably

improved region of asymptotic stability in the nonnegative orthant as compared to regions

of attraction given by closed Lyapunov level surfaces.
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2.14. Neural Network Adaptive Control for Nonlinear Uncertain
Dynamical Systems with Asymptotic Stability Guarantees

Unlike adaptive controllers which guarantee asymptotic stability of the closed-loop sys-

tem states associated with the system plant states, standard neural network adaptive con-

trollers guarantee ultimate boundedness of the closed-loop system states. This fundamental

difference between adaptive control and neuro adaptive control can be traced back to the

modeling and treatment of the system uncertainties. In particular, adaptive control is based

on constant, linearly parameterized system uncertainty models of a known structure but

unknown variation, while neuro adaptive control is based on the universal function approxi-

mation property, wherein any continuous system uncertainty can be approximated arbitrarily

closely on a compact set using a neural network with appropriate weights. This system uncer-

tainty parametrization makes it impossible to construct a system Lyapunov function whose

time derivative along the closed-loop system trajectories is guaranteed to be negative defi-

nite. Instead, the Lyapunov derivative can only be shown to be negative on a sublevel set

of the system Lyapunov function. This shows that, in this sublevel set, the Lyapunov func-

tion will decrease monotonically until the system trajectories enter a compact set containing

the desired system equilibrium point, and thus, guaranteeing ultimate boundedness. This

analysis is often conservative since standard Lyapunov-like theorems used to show ultimate

boundedness of the closed-loop system states provide only sufficient conditions, while neural

network controllers often achieve plant state convergence to a desired equilibrium point.

In this research [52], we develop a neuro adaptive control framework for a class of non-

linear uncertain dynamical systems which guarantees asymptotic stability of the closed-loop

system states associated with the system plant states, as well as boundedness of the neural

network weighting gains. The proposed framework is Lyapunov-based and guarantees par-

tial asymptotic stability of the closed-loop system, that is, Lyapunov stability of the overall

closed-loop system states and convergence of the plant states. The neuro adaptive controllers

are constructed without requiring explicit knowledge of the system dynamics other than the

assumption that the plant dynamics are continuously differentiable and that the approxi-

mation error of uncertain system nonlinearities lie in a small gain-type norm bounded conic

sector. Furthermore, the proposed neuro control architecture is modular in the sense that if

a nominal linear design model is available, then the neuro adaptive controller can be aug-

mented to the nominal design to account for system nonlinearities and system uncertainty.
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2.15. On State Equipartitioning and Semistability in Network Dy-
namical Systems with Arbitrary Time-Delays

Nonnegative and compartmental models are also widespread in agreement problems in

networks with directed graphs and switching topologies. Specifically, distributed decision-

making for coordination of networks of dynamic agents involving information flow can be

naturally captured by compartmental models. These dynamical network systems cover a very

broad spectrum of applications including cooperative control of unmanned air vehicles, dis-

tributed sensor networks, swarms of air and space vehicle formations, and congestion control

in communication networks. In many applications involving multiagent systems, groups of

agents are required to agree on certain quantities of interest. In particular, it is important to

develop consensus protocols for networks of dynamic agents with directed information flow,

switching network topologies, and possible system time-delays. In this research [50], we use

compartmental dynamical system models to characterize dynamic algorithms for linear and

nonlinear *networks of dynamic agents in the presence of inter-agent communication delays

that possess a continuum of semistable equilibria, that is, protocol algorithms that guaran-

tee convergence to Lyapunov stable equilibria. In addition, we show that the steady-state

distribution of the dynamic network is uniform, leading to system state equipartitioning or

consensus. These results extend the results in the literature on consensus protocols for linear

balanced networks to linear and nonlinear unbalanced networks with switching topologies

and time-delays.

2.16. Subspace Identification of Stable Nonnegative and Compart-
mental Dynamical Systems via Constrained Optimization

While compartmental systems have wide applicability in biology and medicine, their use

in the specific field of pharmacokinetics is particularly noteworthy. The goal of pharma-

cokinetic analysis often is to characterize the kinetics of drug disposition in terms of the

parameters of a compartmental model. This is accomplished by postulating a model, col-

lecting experimental data (typically drug concentrations in blood as a function of time), and

then using statistical analysis to estimate parameter values which best describe the data.

There are numerous sources of noise in the data, from assay error to human recording error.

Because of model approximation and noise, there is always an offset between the concen-

tration predicted by the model and the observed data, namely, the prediction error. One

method for estimating pharmacokinetic parameters is maximum likelihood. This approach

assumes a statistical distribution for the prediction error and then determines the parameter

values that maximize the likelihood of the observed results.
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There are two distinct approaches to estimating mean pharmacokinetic parameters for

a population of patients. In the first approach, models are fitted to data from individual

patients, and the pharmacokinetic parameters are then averaged (two-stage analysis) to pro-

vide a measure of the pharmacokinetic parameters for the population. The second approach

is to pool the data from individual patients, called mixed-effects modeling; in this situation

the prediction error is determined by the stochastic noise of the experiment and by the fact

that different patients have different pharmacokinetic parameters. The statistical model used

to account for the discrepancy between observed and predicted concentrations must take into

consideration not only variability between observed and predicted concentrations within the

same patient (intrapatient variability), but also variability between patients (interpatient

variability). Most commonly, it is assumed that the interpatient variability of pharmacoki-
netic parameters conforms to a log-normal distribution. This method of analysis estimates

the mean structural pharmacokinetic parameters as well as the statistical variability of these

elements in the population.

While system identifiability for nonnegative and compartmental systems has been widely

explored in the literature, the system identification problem for these class of systems has

received less attention. System identification refers to the overall problem of determining

system structure as well as system parameter values from input-output data, whereas sys-

tem identifiability refers to the narrower problem of existence and uniqueness of solutions.

Namely, system identifiability concerns whether or not there is enough information in the

observations to uniquely determine system parameters.

In this research [53], we develop a system identification framework for stable nonnegative

and compartmental dynamical systems within the context of subspace identification. Sub-

space identification methods differ from classical least squares identification methods in that

estimates of a state sequence is used to provide estimates of the system parameters. Our

multivariable framework is based on a constrained weighted least squares optimization prob-

lem involving a stability constraint on the plant system matrix as well as a nonnegativity

constraint on the system matrices. The resulting constrained optimization problem is cast

as a convex linear programming problem over symmetric cones involving a weighted cost

function with mixed equality, inequality, quadratic, and nonnegative-definite constraints.

Our approach builds on the subspace identification technique presented in the literature

guaranteeing system stability to address stable nonnegative and compartmental dynamical

systems. Finally, to solve the resulting convex optimization problem, we apply the SeDuMi

MATLAB code to the constrained least squares problem.
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2.17. The Structured Phase Margin for Stability Analysis of Lin-
ear Systems with Phase and Time Delay Uncertainties

Phase information has largely been neglected in robust control theory, but is essential

for maximizing achievable performance in controlling uncertain dynamical systems. Phase

information, here, refers to the characterization of the phase of the modeling uncertainty

in the frequency domain. The analysis and synthesis of robust feedback controllers entails

a fundamental distinction between parametric and nonparametric uncertainty. Parametric

uncertainty refers to plant uncertainty that is modeled as constant real parameters, whereas

nonparametric uncertainty refers to uncertain transfer function gains that may be modeled

as complex frequency-dependent quantities. Real parametric uncertainty in the time domain

provides phase information in the frequency domain.

The distinction between parametric and nonparametric uncertainty is critidal to the

achievable performance of feedback control systems. This distinction can be illustrated

by considering the central result of feedback control theory, namely, the small gain theorem,

which guarantees robust stability by requiring that the loop gain (including desired weight-

ing functions for loop shaping) be less than unity at all frequencies. The small gain theorem,

however, does not make use of phase information in guaranteeing stability. In fact, the small

gain theorem allows the loop transfer function to possess arbitrary phase at all frequencies,

although in many applications at least some knowledge of phase is available. Thus, small

gain techniques such as H,, theory are generally conservative when phase information is

available. More generally, since 10"I = 1 regardless of the phase angle 0, it can be expected

that any robustness theory based upon norm bounds will suffer from the same shortcoming.

Of course, every real parameter can be viewed as a complex parameter with phase ¢ = 00

or 0 = 1800.

To some extent, phase information is accounted for by means of positivity theory. In

this theory, a positive real plant and a strictly positive real uncertainty are both assumed

to have phase less than 900 so that the loop transfer function has less than 180' of phase

shift, hence guaranteeing robust stability in spite of gain uncertainty. Both gain and phase

properties can be simultaneously accounted for by means of the circle criterion which yields

the small gain and positivity theorems as special cases. It is important to note; however,

that positivity theory and the circle criterion can be obtained from small gain conditions by

means of suitable transformations, and hence, are equivalent results from a mathematical

point of view.

The ability to address block-structured gain and phase uncertainty is essential for reduc-

ing conservatism in the analysis and synthesis of control systems involving robust stability

29



and performance objectives. Accordingly, the structured singular value provides a general-

ization of the spectral (maximum singular value) norm to permit small-gain type analysis of

systems involving block-structured complex, real, and mixed uncertainty. Even though the

structured singular value guarantees robust stability by means of bounds involving frequency-

dependent scales and multipliers which account for the structure of the uncertainty as well

as its real -or complex nature, it does not directly capture phase uncertainty information.

Phase information for uncertain dynamical systems has been studied by a significant

number of researchers. Concepts such as principal phases, multivariable phase margin, phase

spread, phase envelope, phase matching, phase-sensitive structured singular value, and plant

uncertainty templates are notable contributions. Principal phases are defined to be the phase

angles associated with the eigenvalues of the unitary part of the polar decomposition of a

complex matrix. Exploiting transfer function phase information, a small phase theorem has

been developed that provides less conservative stability results than the small gain theorem.

An alternative approach to capturing phase uncertainty is given in terms of the numerical

range. In particular, the numerical range provides both gain and phase information, and

hence, can be used to guarantee robust stability with respect to system uncertainties hav-

ing phase-dependent gain variation. Phase-sensitive structured singular value results are

obtained in the literature that allow the incorporation of phase information with multiple-

block uncertainty. An additional class of results involving phase matching for addressing

system phase uncertainty is also reported in the literature. Here, the goal is to obtain a

reduced-order model of a power spectral density by approximating the phase of the spectral

factor. An input-output description of system uncertainty can also be characterized in terms

of gain and phase envelopes. Finally, gain and phase information is addressed by .Quantita-

tive Feedback Theory in the form of frequency domain uncertainty templates which account

for both structured and unstructured uncertainty.

Phase information is critical in capturing system time delays which play an important

role in modern engineering systems. In particular, many complex engineering network sys-

tems involve power transfers between interconnected system components that are not in-

stantaneous, and hence, realistic models for capturing the dynamics of such systems should

account for information in transit. Such models lead to delay dynamical systems. Time-

delay dynamical systems have been extensively studied in the literature. Since time delay

can severely degrade system performance and in many cases drive the system to instability,

stability analysis of time-delay dynamical systems remains a very important area of re-

search. Time-delay stability analysis has been mainly classified into two categories, namely,

delay-dependent and delay-independent analysis. Delay-independent stability criteria pro-

vide sufficient conditions for stability of time-delay dynamical systems independent of the
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amount of time delay, whereas delay-dependent stability criteria provide sufficient conditions

that are dependent on an upper bound of the time delay. In systems where the time delay

is known to be bounded, delay-dependent criteria usually give far less conservative stabil-

ity predictions as compared to delay-independent results. Hence, for such systems it is of

paramount importance to derive the sharpest possible delay-dependent stability margins.

A key method for analyzing stability of time-delay dynamical systems is Lyapunov's

second method as applied to functional differential equations. Specifically, stability analysis

of a given linear time-delay dynamical system is typically shown using a Lyapunov-Krasovskii

functional. These stability criteria may also be interpreted in the frequency domain in terms

of a feedback interconnection of a matrix transfer function and a phase uncertainty block.

Since phase uncertainties have unit gain, delay-independent stability criteria may be derived

using the classical small gain theorem or, more generally, the scaled small gain theorem.

However, in order to derive delay-dependent stability criteria using the (scaled) small gain

approach, one has to perform certain model transformations and then apply the scaled small

gain theorem. The necessity for such model transformations lies in the fact that delay-

dependent stability criteria may be derived only if we can characterize the phase of the

uncertainty in addition to the gain uncertainty.

In this research [43, 47], we present a robust stability analysis method to account for

phase uncertainties. Specifically, we develop a general framework for stability analysis of

linear systems with structured phase uncertainties. In particular, we introduce the notion

of the structured phase margin for characterizing stability margins for a dynamical system

with block-structured phase uncertainty. In the special case where the uncertainty has no

internal structure, the structured phase margin is shown to specialize to the multivariable

phase margin given in the literature. Furthermore, since the structured phase margin may

be, in general, difficult to compute, we derive an easily computable lower bound in terms of a

generalized eigenvalue problem. This bound is constructed by choosing stability multipliers

that are tailored to the structure of the phase uncertainty. In addition, using the structured

phase margin, we derive new and improved delay-dependent stability criteria for stability

analysis of time-delay systems. Even though frequency-domain and integral quadratic con-

straints (IQCs) have been developed to address the time delay problem, with the notable

exception of the literature, all of these results rely on the scaled small gain theorem as applied

to a transformed system. In contrast, we present new robust stability results for time-delay

systems based on pure phase information.
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2.18. Frequency Domain Sufficient Conditions for Stability Analy-
sis of Neutral Time-Delay Systems

In the control systems literature, mathematical models of physical/engineering systems

and ordinary differential equations are practically synonymous. However, for many physical

systems, ordinary differential equations may be inadequate for capturing the dynamic system

behavior. Generalizations of ordinary differential equations, such as hybrid system models

and functional differential equations, are often necessary in order to capture the complex

behavior of some systems. Specifically, in many complex systems such as communication

networks involving power transfers between interconnecting system components that are not

instantaneous, realistic dynamic models should account for information in transit. Such

models lead to time-delay dynamical systems. Time-delay dynamical systems and, more

generally, functional differential equations, have been extensively studied in the literature.

Functional differential equations have been classified into two categories, namely, retarded-

type and neutral-type. A retarded time-delay differential equation is a differential equation

where the time-derivative of the state depends on current state as well as past (delayed)

states, while a neutral time-delay differential equation is a differential equation where the

time-derivative of the state not only depends on the current and delayed states but also the

past (delayed) derivative. Neutral time-delay systems arise in many engineering systems and

have been studied extensively in the literature. In this research [85], we study the stability

problem for neutral time-delay systems. Specifically, we focus on deriving frequency-domain

conditions for linear neutral time-delay systems. The basic idea relies on the fact that the

stability characteristics of a linear neutral time-delay system can be studied in terms of a

feedback interconnection of a matrix transfer function and a phase uncertainty block. Since

phase uncertainties have unit gain, many delay-independent stability criteria were derived

in the literature using the classical small gain theorem or, more generally, the scaled small

gain theorem. Furthermore, many delay-dependent stability criteria were also derived by

applying the (scaled) small gain approach on a transformed time-delayed system.

In this research, using the structured phase margin [43], we derive several new frequency

domain sufficient conditions for stability of linear neutral time-delay systems. We provide

both delay-independent as well as delay-dependent sufficient conditions for stability. Since

the lower bounds derived in [43] are given in terms of a minimization problem involving linear

matrix inequalities all the sufficient conditions presented in this research can be solved as

generalized eigenvalue problems.
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2.19. Reversibility and Poincare Recurrence in Linear Dynamical
Systems

Reversible dynamical systems tend to exhibit a phenomenon known as Poincar6 recur-

rence. Specifically, if the flow of a dynamical system preserves volume and has only'bounded

orbits, then for each open bounded set there exist orbits that intersect this set infinitely often.

It was shown in [31] that Poincar6 recurrence for a nonlinear dynamical system is equivalent

to the existence of system orbits whose initial conditions belong to their own positive. limit

sets. Boundedness of the solutions of a dynamical system is crucial in establishing whether

or not the dynamical system exhibits Poincar6 recurrence. However, for nonlinear dynami-

cal systems, unlike linear systems, boundedness of solutions is not a necessary condition for

Poincar6 recurrence. Another important condition for the existence of Poincar6 recurrence is

volume-preservation. In particular, if the flow of a dynamical system is volume-preserving,

then, assuming that the system orbits are bounded, the image of any open bounded set un-

der the flow of a dynamical system will eventually intersect the original set at some instant

of time, which provides the basis for Poincar6 recurrence. However, volume-preservation is

not sufficient for ensuring Poincar6 recurrence since an unstable system can have a volume-

preserving flow with system trajectories never returning to any neighborhood of their initial

condition.

In the case of linear dynamical systems, we establish necessary and sufficient conditions

for Poincar6 recurrence [96]. Specifically, we show that a linear dynamical system exhibits

Poincar6 recurrence if and only if the system matrix has purely imaginary, semisimple eigen-

values. Furthermore, for linear dynamical systems, we show that a vanishing trace of the sys-

tem dynamics is a necessary and sufficient condition for volume-preservation. In addition, we

show that asymptotically stable and semistable linear systems have volume-decreasing flows,

while unstable systems can either have volume-increasing, volume-decreasing, or volume-

preserving flows. However, none of these systems exhibit Poincar6 recurrence, and hence,

these systems are irreversible [31]. Finally, we show that classical lossless linear Lagrangian

and Hamiltonian dynamical systems are volume-preserving and exhibit Poincar6 recurrence.

2.20. Stability Analysis of Nonlinear Dynamical Systems using
Conley index Theory

One of the most basic issues in system theory is stability of dynamical systems. The

most complete contribution to stability analysis of nonlinear dynamical systems was intro-

duced in the late nineteenth century by A. M. Lyapunov in his seminal work entitled The

33



General Problem of the Stability of Motion. Lyapunov's results which include the direct and

indirect methods, along with the Krasovskii-LaSalle invariance principle, provide a power-

ful framework for analyzing the stability of equilibrium and periodic solutions of nonlinear

dynamical systems. Lyapunov's direct method for examining the stability of an equilibrium

state of a dynamical system requires the construction of a positive-definite function of the

system states (Lyapunov function) for which its time rate of change due to perturbations

in a neighborhood of the system's equilibrium is always negative or zero. Stability of peri-

odic solutions of a dynamical system can also be addressed by constructing a Lyapunov-like

function satisfying the Krasovskii-LaSalle invariance principle.

Alternatively, in the case where the trajectory of a dynamical system can be relatively

easily integrated, Poincar6's theorem provides a powerful tool in analyzing the stability prop-

erties of periodic orbits and limit cycles. Specifically, Poincare's theorem provides necessary

and sufficient conditions for stability of periodic orbits based on the stability properties of

a fixed point of a discrete-time dynamical system constructed from a Poincar6 return map.

However, in many applications, especially for high-dimensional nonlinear systems, system

trajectories cannot be relatively easily integrated and the construction of a Lyapunov func-

tion for establishing stability properties of a dynamical system can be a daunting task.

In this research [98], we use Conley index theory to develop necessary and sufficient

conditions for stability of equilibrium and periodic solutions of nonlinear continuous-time,

discrete-time, and impulsive dynamical systems. The Conley index is a topological gener-

alization of Morse theory which has been developed to analyze dynamical systems using

topological methods. In particular, the Conley index of an invariant set S with respect to

a dynamical system is defined as the relative homology of an index pair for S. The Conley

index can then be used to examine the structure of the system invariant set as well as the

system dynamics within the invariant set, including system stability properties. Specifically,

Conley index theory is based on isolating neighborhoods of the system state space which

enclose components of chain-recurrent sets that can be used to detect connecting orbits

between the components of these sets. The method generates a simplicial complex which

can be used to provide an understanding of the behavior of sets of trajectories rather than

individual orbits of dynamical systems. Efficient numerical algorithms using homology the-

ory have been developed in the literature to compute the Conley index and can be used to

deduce the stability properties of nonlinear dynamical systems.
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2.21. Controller Analysis and Design for Systems with Input Hys-
tereses Nonlinearities

In recent years the desire to orbit large, lightweight space structures with high-performance

requirements has prompted researchers to consider actuators which possess a fraction of the

size and Weight of more conventional actuation devices. As a consequence, considerable re-

search interest has focused in the field of smart or adaptive materials as a viable alternative

to conventional proof mass actuators for vibration control. Due to the fact that adaptation

in smart materials is a result of physical nonlinear changes occurring within the material,

these actuation devices exhibit significant hysteresis in the actuator response. Specifically,

smart distributed actuators such as shape memory alloys, magnetostrictives, electrorheolog-

ical fluids; and piezoceramics all exhibit hysteretic effects. Since hystereses nonlinearities

can severely degrade closed-loop system performance, and in some cases drive the system to

a limit cycle instability, they must be accounted for in the control-system design process.

Even though numerous models for capturing hystereses effects have been developed, with

the Preisach model being the most widely used, controller analysis and synthesis for feedback

systems with hystereses nonlinearities has received little attention in the literature. 'The main

complexity arising in hystereses nonlinearities is the fact that every reachable point in the

input-output hysteresis map does not correspond to a uniquely defined point. In fact, at any

reachable point in the input-output hysteresis map there exists an infinite number of trajec-

tories that may represent the future behavior of the hysteresis dynamics. These trajectories

depend on a particular past history of the extremum values of the input. However, hystereses

nonlinearities with counterclockwise loops have been shown to be dissipative with respect

to a supply rate involving force inputs and velocity outputs. Dissipative hystereses models

include the well known backlash nonlinearities, stiction nonlinearities, relay hystereses, and

most of the hystereses nonlinearities arising in smart material actuators.

The contribution of this research [5] is a methodology for analyzing and designing out-

put feedback controllers for systems with input hystereses nonlinearities. Specifically, by

transforming the hystereses nonlinearities into dissipative input-output dynamic bperators,

dissipativi'ty theory is used to analyze and design linear controllers for systems with input

hystereses nonlinearities. In particular, by representing the input hysteresis nonlinearity as

a dissipative input-output dynamical operator with respect to a given supply rate, partial

closed-loop asymptotic stability, that is, asymptotic stability with respect to part of the

closed-loop state associated with the plant and the controller, is guaranteed in the face of

an input hysteresis nonlinearity. Furthermore, it is shown that the reminder of the state

associated with the hysteresis dynamics is semistable, that is, the limit points of the hys-
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teretic states converge to Lyapunov stable equilibrium points determined by the system

initial conditions.

3. Research Personnel Supported

Faculty

Wassim M. Haddad, Principal Investigator

Graduate Students

Sergei G. Nersesov, Ph. D.

Qing Hui, Ph. D.

Several other students (T. Hayakawa, J. J. Im, and J. Ricordeau) were involved in research

projects that were closely related to this program. Although none of these students were

financially supported by this program, their research did directly contribute to the overall

research effort. Furthermore, two Ph. D. dissertations were completed under partial support

of this program; namely

T. Hayakawa, Direct Adaptive Control for Nonlinear Uncertain Dynamical Systems,
Ph. D. Dissertation, School of Aerospace Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, November 2003.

S. G. Nersesov, Nonlinear Impulsive and Hybrid Dynamical Systems, Ph. D. Disser-
tation, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta,
GA, August 2005.

Dr. Hayakawa holds the rank of Associate Professor of Mechanical and Environmental

Informatics at Tokyo Institute of Technology, while Dr. Nersesov is an Assistant Professor

of Mechanical Engineering at Villanova University.

4. Interactions and Transitions

4.1. Participation and Presentations

The following conferences were attended over the past three years.

Foufth International Conference on Dynamical Systems and Applications; Atlanta,
GA, May 2003.
American Control Conference, Denver, CO, June 2003.

IEEE Conference on Decision and Control, Maui, HI, December 2003.
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American Control Conference, Boston, MA, July 2004.

World Congress of Nonlinear Analysts, Orlando, FL, July 2004.

IEEE Conference on Decision and Control, Paradise Island, Bahamas, December 2004.

American Control Conference, Portland, OR, June 2005.

IEEE Conference on Decision and Control, Seville, Spain, December 2005.

Furthermore, conference articles [56-99] were presented.

4.2. Transitions

Our work on adaptive and neuro adaptive control of drug delivery partially supported

under this program has transitioned to clinical studies at the Northeast Georgia Medical

Center in Gainesville, Georgia, under the direction of Dr. James M. Bailey (770-534-1312),

director of cardiac anesthesia and consultant in critical care medicine. To date, we have

performed nineteen clinical trials.

In critical care medicine it is current clinical practice to administer potent drugs that

profoundly influence levels of consciousness, respiratory, and cardiovascular function by man-

ual control based on the clinician's experience and intuition. Open-loop control by clinical

personnel can be tedious, imprecise, time-consuming, and sometimes of poor quality, de-

pending on the skills and judgment of the clinician. Military physicians may face the most

demanding of critical care situations when dealing with the causalities of hostile action and

in these situations, precise control of the dosing of drugs with potent cardiovascular and

central nervous system effects is critical. It has been an aphorism among anesthesiologists

since World War II that "thiopental (a common drug for the induction of anesthesia) killed

more Americans at Pearl Harbor than the enemy," referring to the consequences of cardio-

vascular collapse induced by thiopental in trauma patients. Furthermore, military medicine

faces unique challenges compared to the civilian sector. The necessity of triage has, sadly,

been a not rare event in times of war due to unexpected numbers of causalities overwhelm-

ing available resources and furthermore, health care providers may be among the causalities.

Because of the possibility of demands on health care providers that may exceed local re-

sources, we believe that it is crucial to investigate the use of advanced control technology

to extend the capabilities of the health care system to handle large numbers of causalities.

Closed-loop control based on appropriate dynamical system models can improve the quality

of drug administration in surgery and the intensive care unit, lessening the dependence of

patient outcome on the skills of the clinician.
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